

FOUR-DIGIT NUMBERS THAT REVERSE THEIR
 DIGITS WHEN MULTIPLIED

T. J. KACZYNSKI

If $n \geqslant 2$ is an integer and $a_{0}, a_{1}, \ldots, a_{h}$ are integers satisfying $0 \leq a_{1}<n$ for $1=0,1, \ldots, h$, then wo let $\left(a_{h}, \ldots, a_{1}, a_{n}\right)_{n}$ denote the number $\sum_{j=0}^{h} a_{j} n^{j}$. Whenever we write a symbol of the form $\left(a_{h}, \ldots, a_{1}, a_{0}\right)_{n}$, it is to be understood that $0 \leqslant a_{1}<n$ for $1=0,1, \ldots, h$, so that $a_{h}, \ldots, a_{1}, a_{0}$ are the digits of the number $\left(a_{h}, \ldots, a_{1}, a_{0}\right)_{n}$ in base n notation.

If k is an integer and $1<k<n$, we say that ($\left.a_{h}, \ldots, a_{1}, a_{0}\right)_{n}$ is reversible for n, k if and only if $a_{h} \neq 0$ and $k\left(a_{h}, \ldots, a_{1}, a_{0}\right)_{n}=$ $\left(a_{0}, a_{1}, \ldots, a_{h}\right)_{n}$. Reversible numbers have been studied in [1], [2], [3]. The purpose of this paper is to construct a rather involved family of 4-digit reversible numbers that illustrates the complexity of the reversible number problem. We use the abbreviation RN for "reversible number".

Sutcliffe [3] showed that there exists a 4 -digit RN for any base $n \geq 3$. Let d be any divisor of n
(possibly n itself) with $d-3$, and set $t=n / d$ and $k=d-1$. Then

$$
i k(t, t-1, n-t-1, n-t)_{n}=(n-t, n-t-1, t-1, t)_{n}
$$

RMs was redisrownot
(This family of discovered in [2].) Let us refer to a RN of this type as a Sutcliffe RN. Note that the Sutcliffe reversible number ($t, t-1, n-t-1, n-t)_{n}$ is equal to $(n+1)(t-1, n-1, n-t)_{n}$.

At least two other types of 4-digit Ns may exist for certain values of n.

If $(a, b, c)_{n}$ is a 3 -digit $R N$ for n, k, and if $a+b \leq n-1$ and $b+c \leq n-1$, then $(n+1)(a, b, c)_{n}$ is a 4-digit RN for n, k. (For instance, $4 \times(2,5,9)_{17}=$ $(9,5,2)_{17}$; multiplying by 18 yields $4 \times(2,7,14,9)_{17}$ $\left.=(9,14,7,2)_{17}.\right)$

If $(a, b, c)_{n}$ is any solution of the system of conditions

$$
\begin{align*}
& k(a, b, c)_{n}=(c-1, b+1, a)_{n}, \\
& a+b \leq n-2, \quad b+c \geq n, \quad a \neq 0, \tag{1}
\end{align*}
$$

then $(n+1)(a, b, c)_{n}$ is a 4-digit $R N$ for n, k as can be verified by computation. We note that a then a $R N$ der from a solution of (1) can never be a Sutchffe RN for
n, s, because if $t=n /(k+1)$ then $(t-1, n-1, n-t)_{n}$ cannot satisfy (1).

One family of solutions of (1) can be obtained by taking any integers $u \geq 1$ and $k \geq 3$ and setting $n=u\left(k^{2}-1\right)+k, \quad a=(k-1) u, \quad b=(u(k+1)+1)(k-2)$, $c=(u k+1)(k-1)$. Observe that the corresponding 4-digit $R N$ is $(n+1)(a, b, c)_{n}=(k-1, k-3, k-1)_{n}(u, u k+1)_{n}$. and that $\left(u, u_{i}+1\right)_{n}$ is a $2-d \leq z{ }^{2}$ N N for n, k.

Sutcliffe [3] showed that there exists a 2-digit $R N$ in base n notation if and only if $n+1$ is not prime. It was shown in [1] that there exists a 3-digit RN for n if and only if $n+1$ is not prime. This directs our attention to 4 -digit $R N s$ in the case where $\mathrm{n}+1$ is prime.

Does (1) ever have a solution when $n+1$ is prime? The answer is yes. With $n+1=59$ we have $19 \times(2,41,52)_{58}=(51,42,2)_{58}$, which yields $19 \times(2,44,35,52)_{58}=(52,35,44,2)_{58}$.

Do there exist infinitely many such examples? The answer is again yes. Let s be any nonnegative integer, take $k=19, n=58+360 \mathrm{~s}, \mathrm{a}=2+17 \mathrm{~s}, \quad \mathrm{~b}=41+260 \mathrm{~s}$, $c=52+323 \mathrm{~s}$, and we have a solution of (1). By Dirichlet's Theorem, there are infinitely many positive integers s for which $n+1=59+360$ s is prime.

However, all these solutions are in a sense
isomorphic; we do not regard them as essentially different. What we really want to show is this

There exist infinitely many positive integers k having the property that there exist integers n, a, b, c for which $n+1$ is prime and the system of conditions (1) is satisfied.

This is our main result. To rove it, set

$$
\begin{aligned}
& f(x)=41067 x^{2}-1404 x+9 \\
& g(x)=10179 x^{2}-222 x+1
\end{aligned}
$$

The discriminant of $g(x)$ is $8568=2^{3} \cdot 1071$, not a square, so $g(x)$ has no in near facies with rational coefficients. Therefore $f(x)$ and $g(x)$ have no nonconstant common factor with rational coefficients. Consequently there exist polynomials $p(x)$ and $q(x)$. with rational coefficients, such that $p(x) f(x)+q(x) g(x)=1$. Let $d>0$ be the product of the denominators of all the fractions that appear as coefficients of $p(x)$ and $q(x)$, and let $p(x)=d p(x)$ and $Q(x)=d q(x)$. Then $P(x)$ and $Q(x)$ have integer coefficients and $P(x) f(x)+Q(x) g(x)=d$.

Let k be any number of the form $k=117 y d-2$, where y is a positive integer. Let $D=y d$ and let
V oe the greatest common divisor of $f(D)$ and $g(D)$. Then V divides $D=y P(D) P(D)+y Q(D) g(D)$. Since V divides $E(D)$ it follows that v divides 1 . Thus $f(D)$ and $g(D)$ are relatively prime.

By Dirichlet's Theorem, we can choose a positive integer t for which $f(D) t+g(D)$ is prime. Set $n=f(D) t+g(D)-1=\left(4 i 067 D^{2}-1404 D+9\right) t+10179 D^{2}-222 D$, $u=13 D, r=2(u-1), m=117 D t-t+29 D=(9 u-1) t+29 D$, $U=3 u-1, \quad R=3 r+1=6 u-5=78 \mathrm{D}-5, \quad M=9 \mathrm{~m}+1$, $w=9 r m+3 m+r$.

We compute $i s=117 D-2=9 u-2=30+1, n=M U+1, \quad M R=3 W+1$.

Modulo $9 u-1$ we have the following congruences:

$$
\begin{aligned}
n R+w & =(M U+1)(6 u-5)+9 r m+3 m+r \\
& =(27 m u+3 u-9 m)(6 u-5)+18 m u-15 m+2 u-2 \\
& \equiv(3 m+3 u-9 m)(6 u-5)+2 m-15 m+2 u-2 \\
& =18 u^{2}-13 u-36 m u+17 m-2 \equiv-2 u+13 m-3 \\
& \equiv-26 D+377 D-3=351 D-3=3(117 D-1)=3(9 u-1) \\
& \equiv 0(\bmod 9 u-1) .
\end{aligned}
$$

Thus nR +w is divisible by $9 u-1$. Choose an integer c
so that $(k+1) c=(9 u-1) c=n R+w$. Set $S=$ $\operatorname{inR} R-\left(k^{2}-1\right) c-1$. Because $(n+1) R=(M O+2) R \equiv 1(\bmod 3)$, ye see that $x-1=30$ divides $M U[(n+1) R-1]$. Thus

$$
\begin{aligned}
S n-R+1 & =\left(k n^{2}-1\right) R-\left(k^{2}-1\right) n c-(n-1) \\
& \equiv\left(n^{2}-1\right) R-(n-1)=M U[(n+1) R-1] \equiv 0(\bmod k-1) .
\end{aligned}
$$

Choose an integer b so that $(k-1) b=S n-R+1$. Sot $a=k c-R n$. We then have
(4)

$$
\begin{align*}
k c & =R n+a \tag{2}\\
k b+R & =S n+b+1 \tag{3}\\
k a+S & =c-1
\end{align*}
$$

We must show that certain inequalities are satisfied. Clearly $2<k<n, c>2,2<R<k-1$. Thus $\left(k^{2}-1\right) c=3 U(k+1) c=3 U(n R+W)<3 U n R+U M R<$ $30 n R+n R=k n R<k n(k-1)<\left(k^{2}-1\right) n$. So $2<c<n$. Observe that $\mathrm{R}-1+\mathrm{U}<3 \mathrm{U}<2(\mathrm{R}-1)+\mathrm{U}$. Adding $3 U(k+1) c=3 U(n R+w)$ to this inequality gives $3 U(n R+w)+R-1+U<3 U(k+1) C+W=3 U(n R+\pi)+2(R-1)+U$. $(k-1) n R+R-1+M R U<\left(k^{2}-1\right) c+k-1<(k-1) n R+2 R-2+M R U$, $(k-1) n R+n R-1<\left(k^{2}-1\right) c+k-1<(k-1) n R+n R+R-2$,

$$
\begin{gathered}
1<\left(k^{2}-1\right) c-i n n R+k+1<R, \\
k-R<S<k-1 .
\end{gathered}
$$

Thus $2<S<s-1$ (from which we see that $b>0$) and (5)

$$
S+R \geq i k+1 .
$$

Also, $(k-1) b=S n-R+1<S n \leq(k-2) n$, wo so that $b<\frac{k-2}{k-1} n$ $<\frac{n-1}{n} n=n-1$, and $b+1<n$. Note that $(x+1)^{2}<n$, so that $(k+1) c=n R+w>$ $(k+1)^{2}$ and $c-1>k>S$. Thus $k a=c-1-S>0$, so that $a>0$.

From (3) and (4), we find $k(a+b)+R+S=S n+b+c<$ $(S+2) n \leq k n$. Therefore $a+b<n$. Suppose $a+b=n-1$. Then from (4) and the definition of b we have $(k-1)(n-1)=(k-1)(a+b)=S(n-1)+c-a-R$. Consequently $n-1$ divides $c-a-R$. But $c>k a$ by (4), so $n-1>$ $c-a-R>(k-1) a-R>0$. This contradiction shows that $a+b \leq n-2$.

From (3) and (5) we see that $(k-1)(b+c)=$ $\mathrm{Sn}-\mathrm{R}+1+(\mathrm{k}+1) \mathrm{c}-2 \mathrm{c}=(\mathrm{S}+\mathrm{R}) \mathrm{n}+\mathrm{w}+1-\mathrm{R}-2 \mathrm{c} \geq(k+1) \mathrm{n}+\mathrm{w}+1-\mathrm{R}-2 \mathrm{c}>$ ($k-1)_{n+w+1-R}$. But $3 R<M R=3 w+1$, so that $R<w+1$. Therefore $b+c>n$.

Equations (2), (3), (4), together with the inequalities we have just proved, show that $(a, b, c)_{n}$ satisfies (1). .

In the foregoing argument there is no need to restrict ourselves to the case where $n+1$ is prime, so
the construction also yields many 4 -digit iNs for composite values of $n+1$.

We hove to publish at a later date a more general treatment of reversible numbers, in which we shall prove (among other things) that if $n+1$ is prime, then every 4 -digit $R N$ for n is either a Sutcliffe $R N$, or of the form $(n+1)(a, b, c)_{2}$, where $(a, b, c)_{n}$ is a solution of (1).

REFERENCES

1. T. J. Kaczynski, Note on a problem of Alan Sutcliffe, Math. Mas. 41 (1968), 84-86.
2. L. F. Klosinsisi and D. C. Smolarski, on the reversing of digits, Math. Mag. 42 (1969), 208-210.
3. A. Sutcliffe, Integers that are multiplied when their digits ace reversed, Math. Mag. 39 (1966), 282-287.
